UrbanPro
true

Take BTech Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Search in

Depth First Traversal For A Graph

D Subba Rao
05/02/2018 0 0

Depth First Traversal (or Search) for a graph is similar to Depth First Traversal of a tree. The only catch here is, unlike trees, graphs may contain cycles, so we may come to the same node again. To avoid processing a node more than once, we use a boolean visited array.

For example, in the following graph, we start traversal from vertex 2. When we come to vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited vertices, then 2 will be processed again and it will become a non-terminating process. A Depth First Traversal of the following graph is 2, 0, 1, 3.

Following are implementations of simple Depth First Traversal. The C++ implementation uses adjacency list representation of graphs. STL‘s list container is used to store lists of adjacent nodes.

First Traversal (or Search) for a graph is similar to Depth First Traversal of a tree. The only catch here is, unlike trees, graphs may contain cycles, so we may come to the same node again. To avoid processing a node more than once, we use a boolean visited array.

For example, in the following graph, we start traversal from vertex 2. When we come to vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited vertices, then 2 will be processed again and it will become a non-terminating process. A Depth First Traversal of the following graph is 2, 0, 1, 3.

                                        
Following are implementations of simple Depth First Traversal. The C++ implementation uses adjacency list representation of graphs. STL‘s list container is used to store lists of adjacent nodes.

// C++ program to print DFS traversal from
// a given vertex in a  given graph
#include
#include
using namespace std;
 
// Graph class represents a directed graph
// using adjacency list representation
class Graph
{
    int V;    // No. of vertices
 
    // Pointer to an array containing
    // adjacency lists
    list<int> *adj;
 
    // A recursive function used by DFS
    void DFSUtil(int v, bool visited[]);
public:
    Graph(int V);   // Constructor
 
    // function to add an edge to graph
    void addEdge(int v, int w);
 
    // DFS traversal of the vertices
    // reachable from v
    void DFS(int v);
};
 
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<int>[V];
}
 
void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w); // Add w to v’s list.
}
 
void Graph::DFSUtil(int v, bool visited[])
{
    // Mark the current node as visited and
    // print it
    visited[v] = true;
    cout << v << " ";
 
    // Recur for all the vertices adjacent
    // to this vertex
    list<int>::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
        if (!visited[*i])
            DFSUtil(*i, visited);
}
 
// DFS traversal of the vertices reachable from v.
// It uses recursive DFSUtil()
void Graph::DFS(int v)
{
    // Mark all the vertices as not visited
    bool *visited = new bool[V];
    for (int i = 0; i < V; i++)
        visited[i] = false;
 
    // Call the recursive helper function
    // to print DFS traversal
    DFSUtil(v, visited);
}
 
int main()
{
    // Create a graph given in the above diagram
    Graph g(4);
    g.addEdge(0, 1);
    g.addEdge(0, 2);
    g.addEdge(1, 2);
    g.addEdge(2, 0);
    g.addEdge(2, 3);
    g.addEdge(3, 3);
 
    cout << "Following is Depth First Traversal"
            " (starting from vertex 2) \n";
    g.DFS(2);
 
    return 0;
}
0 Dislike
Follow 2

Please Enter a comment

Submit

Other Lessons for You

C program for Beginners
A Program to print 2 integer value. #include<stdio.h> #include<conio.h> main() int a,b,add; a=5; b=3; add=a+b; printf(“ Addition=%d”,&add); getch(); Brief description...
P

Spring - Dependency Injection (DI)
Spring - Dependency Injection (DI) DI is a framework which provides loose coupling in code. Here loose coupling means no hard coding of the object. Instead of hard coding, we will be injecting these object...

Circular Queue
#include <stdio.h> #include <stdlib.h> #define MAX 5 char a; int front = 0, rear = -1, count = 0; void insert() { char item; if(count==MAX) { printf("\n\t\tCircular Queue...
B

Balaji K

0 0
0


What Are Register Variables?
Registers are faster than memories to access. Hence when we declare a variable with a registerkey word, the compiler gets to know that the variable can be put to registers. Now whether the variables will...
X

Looking for BTech Tuition Classes?

The best tutors for BTech Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take BTech Tuition with the Best Tutors

The best Tutors for BTech Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more